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Abstract. The influence of antiferromagnetic order on the mixed state of a superconductor may result in
creation of spin-flop domains along vortices. This may happen when an external magnetic field is strong
enough to flip over magnetic moments in the vortex core from their ground state configuration. The
formation of domain structure causes modification of the surface energy barrier, and creation of the new
state in which magnetic flux density is independent of the applied field. The modified surface energy barrier
has been calculated for parameters of the antiferromagnetic superconductor DyMo6S8. The prediction of
two-step flux penetration process has been verified by precise magnetization measurements performed on
the single crystal of DyMo6S8 at milikelvin temperatures. A characteristic plateau on the virgin curve
B(H0) has been found and attributed to the modified surface energy barrier. The end of the plateau
determines the critical field, which we call the second critical field for flux penetration.

PACS. 74.60.-w Type-II superconductivity – 74.25.Ha Magnetic properties

Introduction

The discoveries of ternary Rare Earth (RE) Chevrel
phases REMo6S8 [1] and RERh4B4 compounds with reg-
ular distribution of localized magnetic moments of RE
atoms have proved conclusively the coexistence of vari-
ous types of magnetism with superconductivity. Intensive
experimental and theoretical works have shown that 4f
electrons of RE atoms responsible for magnetism and 4d
electrons of molybdenum chalcogenide or rhodium boride
clusters responsible for superconductivity are spatially
separated and therefore their interaction is weak. It seems
that in many of these systems superconductivity coexists
rather easily with antiferromagnetic order, where usually
the Néel temperature TN is lower than the critical temper-
ature for superconductivity Tc. On the other hand, ferro-
magnetism and superconductivity cannot coexist in bulk
samples with realistic parameters. Quite often the ferro-
magnetic order is transformed into a spiral or domain-like
structure, depending on the type and strength of magnetic
anisotropy in the system [2,3]. For almost two decades the
problem of the interaction between magnetism and super-
conductivity has been overshadowed by high temperature
superconductivity found in copper oxides. However, the
recent discovery of the presence of magnetic order in Ru-
based superconductors [4–6] has triggered a new series of
experiments and inspired a return to the so-called coex-
istence phenomenon [7]. Most recently, the interplay be-
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tween magnetism and superconductivity was studied in
d-electron UGe2 [8] and ZrZn2 [9], where itinerant fer-
romagnetism may coexist with superconductivity, and in
heavy fermion UPd2Al3 [10], where magnetic excitons are
present in superconducting phase.

Among classical magnetic superconductors, the
Chevrel phases have been studied most intensively. These
compounds are mainly polycrystalline materials. However,
some specific features can be measured only on single crys-
tals. One such effect is a two-step flux penetration process,
predicted in references [11,12] and later observed in an an-
tiferromagnetic superconductor (bct) ErRh4B4 [13] and
recently in DyMo6S8 [14]. This anomaly was explained as
a result of the magnetic transition taking place in the vor-
tex core. This transition seems to create a new type of
vortices with the unique magnetic structure as shown in
Figure 1. In the present paper the two-step flux penetra-
tion process is calculated and measured for a single crystal
of DyMo6S8. The DyMo6S8 compound with Tc = 1.6 K
exhibits transition from the paramagnetic to the antifer-
romagnetic state at TN = 0.4 K. Its crystal structure can
be described as interconnected Mo6S8 units and Dy ions.
One such unit is a slightly deformed cube where S atoms
sit at the corners and Mo atoms are situated at the cube-
faces. The Mo6S8 units are arranged in a simple rhom-
bohedral lattice and Dy ions are located in the center of
the unit cell. The magnetic moments of Dy ions form a
simple structure consisting of (100) planes with moments
of 8.7 µB alternately parallel and antiparallel to the [111]
rhombohedral axis.
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Fig. 1. The magnetic structure of the isolated vortex and the
distribution of the magnetic induction around the vortex core
in the spin-flop SF and antiferromagnetic AF phases [11].

Neutron experiments performed on DyMo6S8 in an ap-
plied magnetic field at T = 0.2 K have revealed in the
intensity spectrum a number of peaks characteristic for
ferromagnetic order [15]. These peaks begin to develop
at H0 = 200 Oe, much below the superconducting upper
critical field Hc2. Thus, in DyMo6S8 a kind of ferromag-
netic order coexists with superconductivity in the same
manner as antiferromagnetism. For a field applied paral-
lel to the [111] direction (magnetic easy-axis direction),
the ferromagnetic order is a spin-flop type [16]. This fea-
ture is easy to understand. Consider the well known phase
diagram of a two-sublattice antiferromagnet. An infinites-
imal magnetic field applied perpendicular to the easy axis
makes the ground antiferromagnetic configuration unsta-
ble against the phase transformation to the canted phase.
On the contrary, if the magnetic field is applied parallel
to the easy axis the antiferromagnetic (AF) phase is sta-
ble up to the thermodynamic critical field HT . When the
field is further increased, a spin-flop (SF) phase develops
in the system. Let us assume that in the antiferromagnetic
superconductor the lower critical field fulfills the relation
Hc1 < 1

2HT and that the external field H0 is applied par-
allel to the easy axis. When Hc1 < H0 < 1

2HT the vortices
appear entirely in the AF phase. When H0 is increased be-
yond 1

2HT the phase transition to the SF phase originates
in the core, because near Hc1 the field intensity in the core
is approximately twice Hc1 [17]. The spatial distribution
of the field across the vortex is a function decreasing from
the center as seen in Figure 1. Thus, the magnetic field
intensity outside the core is less then HT and, therefore,
the rest of the vortex remains in the AF phase. The ra-
dius of a spin-flop domain grows as the field is increased.
The formation of domains inside the vortices should be
accompanied by the modification of the surface energy
barrier [12]. This process leads to a state of the supercon-
ductor in which flux entrance is temporarily prohibited –
flux density is independent of the applied field. In order to
kill this state the external field should be increased above
certain second critical field for flux penetration. Then, the
vortices penetrating the sample will have the spin flop do-
mains created along the cores. The goal of our work is to

compare the model calculations based on the method of
images [18] with the experimental results obtained for the
DyMo6S8 single crystal.

Theoretical considerations

In order to describe thermodynamic behavior of DyMo6S8

for constant temperature and constant external magnetic
field we introduce the following free energy functional [2]

F =
∫

dV

{
fS + fM +

1
8π

(B − 4πM)2
}
· (1)

Here B is the magnetic induction, M = M1 + M2 the
magnetization of two sublattices antiferromagnet and H =
B− 4πM the intensity of thermodynamic magnetic field.
The energy density of the superconducting subsystem fS

is expressed in a standard way

fS =
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The quantity e, m, c denote charge and mass of the
electron and light velocity, respectively. According to
experiments the antiferromagnetic order is practically
unaffected by the appearance of superconductivity, then
it is reasonable to neglect the effect of superconductivity
on the exchange interaction in F . This means that both
order parameters Ψ and M are coupled via the vector
potential A:

∇× A = B = H + 4πM

js =
c

4π
∇× H, (3)

where js denotes a superconducting current. The antifer-
romagnetic energy density, which mimics the experimental
results in DyMo6S8, is given by the following expression

fM = JM1 · M2 + K

2∑
i=1

(Mz
i )2 − |γ|

2∑
i=1

∑
j=x,y,z

(
∇M j

i

)2

.

(4)

Here J is the exchange constant between two antiferro-
magnetic sublattices, K denotes single ion anisotropy con-
stant, and

√|γ| is the magnetic stiffness length. Since
in the following we analyze the phenomena with char-
acteristic length-scales much larger then the interatomic
Dy-Dy distance it is justified to omit the gradient term
in fM . The components of the total magnetization vector
M = M1 + M2, |Mi| = M0 (i = 1, 2) have the follow-
ing form in both sublattices: Mix = M0 sin θi, Miy = 0,
Miz = M0 cos θi, where θi (canted spin angle) is the an-
gle between the magnetization in the sublattice and the
external magnetic field directed along z-axis. The AF
(θ1 = 0, θ2 = π) and SF phases (θ1 = −θ2 = θ) are in
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thermodynamic equilibrium in an applied field equal to
the thermodynamic critical field:

HT = M0[K(J − K)]1/2. (5)

The canted spin angle of the SF phase is then expressed as

cos θ =
KM0

HT
· (6)

The equilibrium conditions of the whole system can
be obtained via minimization the Gibbs free energy

functional G = F − 1
4π

∫
(B · H0)dV with respect to Ψ ,

A and M. Performing this task in London approximation
one can obtain

B + λ2∇×∇× (B − 4πM) = 0, (7)

where λ is the London penetration depth. The appropri-
ate equations describing spatial distribution of M should
accompany equation (7). To make the problem simpler we
suppose that the magnetization is constant across the SF
domain [12,19]. In this way the distribution of the mag-
netization around a single vortex is the following

|M| =




M if r ≤ r0

0 if r > r0

, (8)

where r0 is the radius of the spin-flop domain. With the
help of equation (7) one can write equation (1) for a single
vortex as follows

F =
1
8π

∫ {
(bSF − 4πM)2 + λ2 [∇×(bSF − 4πM)]2

}
dVSF

+
1
8π

∫ [
b2

AF + λ2 (∇× bAF)2
]
dVAF. (9)

Here bAF and bSF denote magnetic induction in AF and
SF phases of a single vortex, respectively. The integrals
are performed over the volume of each phase with the
exclusion of the volume of the vortex core. Equation
(7), for a single vortex, can be solved in the cylindrical
coordinates in terms of the modified Bessel functions K0

and I0:

bSF = C1K0

( r

λ

)
+ C2I0

( r

λ

)
, for ξ < r ≤ r0

bAF = C3K0

( r

λ

)
, for r > r0, (10)

(ξ denotes the coherence length) with the following
boundary conditions:

bSF

(r0

λ

)
= HT + 4πM = BT

bAF

(r0

λ

)
= HT . (11)

These conditions, together with the flux quantization con-
dition, are used to calculate the arbitrary constants in
equation (10).
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Finally, the minimum of the free energy of the vortex per
unit length

ε1 =
λ2

8π

∮
σ1

dl {[bSF − 4πM] ×∇× bSF}

+
λ2

8π

∮
σ2

dl {bAF ×∇× bAF} , (13)

with respect to r0 determines:(r0

λ

)2

=
ϕ0

πλ2BT
· (14)

The line integrals in equation (13) are performed over the
cross-sections perpendicular to the axis of an appropriate
cylindrical element of the surface of the vortex, σ1 denotes
the surface of the vortex core, σ2 the surface of the SF
domain.

In order to study the conditions under which magnetic
flux density in the sample becomes unstable in the applied
magnetic field one must take into account the surface en-
ergy barrier preventing vortices from entering or exiting
the sample. The presence of a surface of the supercon-
ductor leads to the distortion of the field and current of
any vortex located within a distance of the order of pene-
tration depth from the surface. The requirement that the
currents cannot flow across the surface of the supercon-
ductor leads to the introduction of an image vortex, at
x = −xL, with vorticity opposite to the real one. Both
vortices interact as real ones except that the interaction
is attractive.

We consider semi-infinite specimen in the half space
x ≥ 0, the vortex and the external magnetic field run-
ning parallel to the surface. In the low flux density regime
ξ2 < ϕ0/B < λ2, Clem [18] has shown the existence of a
vortex-free region of the width xvf near the surface of the
sample and constant vortex density region for x > xvf .
Within vortex-free area one can introduce locally aver-
aged magnetic field BM exponentially decreasing from its
surface value H0 to its average interior value B,

BM = B cosh
(

xvf − x

λ

)
· (15)
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The boundary condition BM (0) = H0 determines the
thickness of the vortex-free region

xvf = λ cosh−1

(
H0

B

)
· (16)

Now we can characterize the distribution of the magnetic
induction around a single vortex in the vortex-free region

BSF = bSF
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λ

)
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λ

)
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(xvf − x

λ

)
,
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(x − xL

λ

)
− bAF

(x + xL

λ

)

+ BM

(xvf − x

λ

)
· (17)

The Gibbs free energy of the system can now be written
in the following way

G =
λ2

8π

∮
σ1

dσ {[BSF − 2H0 − 4πM] ×∇× BSF}

+
λ2

8π

∮
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+
λ2

8π

∮
σ3

dσ {ẑBM ×∇× BAF} , (18)

where σ3 is the surface of the specimen. After some trans-
formations [12,18], one can obtain the Gibbs free energy
per unit length G in the following form:

G = ε1 − λ2

4
D1bAF

(
2xL

λ

)

− λ2

2

[
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G has its maximum at x = xmax somewhere in the vortex-
free region r0 < xmax < xvf . We can find xmax solving the
force balance equation. When the external field reaches

Hen2 (B) = B cosh
(xen

λ

)
, (20)

where xen is the vortex-free width corresponding to an ex-
ternal field equal to Hen2, the energy barrier moves within
a distance r0 of the surface (r0 � xvf ). Thus, one can get

−λD1

2D2

dbAF

(
2xL

λ

)

dxL

∣∣∣∣∣∣∣∣
xL=r0

= B sinh
(

xen − r0

λ

)
· (21)

The left hand side of the above equation gives Hen2(0).
This field may be thought as the second critical field for
flux penetration calculated in the single vortex approxi-
mation [12].

2Hen2(0) =
HT√

ϕ0

πλ2BT
ln

(
πλ2BT

ϕ0

) · (22)

Taking into account that r0 � xen we finally obtain

Hen2(B) =
√

B2 + H2
en2(0) · (23)

Let us make a short summary of the calculations. When
the SF domain develops, the screening current must re-
distribute its flow around the vortex in order to fulfill the
single flux quantum requirement. This one can easy de-
duce from equations (10–12). The redistribution of the
screening current causes the change in the surface energy
barrier preventing vortices from entering into the sample.
This is expressed in equation (19). Consequently, the aver-
aged flux density in the sample B = nϕ0 remains constant
when the external field is increased. The vortices start to
penetrate into the sample again when the second critical
field for flux penetration, calculated in equation (23), is
reached.

Experimental details

The single crystals of DyMo6S8 were grown using the
slow cooling of a melted charge closed in hermetically
sealed molybdenum ampoules. Details of the crystal grow
procedure are described elsewhere [14,20]. The crystals
were pure, homogeneous and large enough to be used
for studying some subtle effects accompanying the mag-
netization process at milikelvin temperatures. Chemical
composition and crystal uniformity were examined using
a Hitachi Scanning Electron Microscope equipped with
an energy dispersive X-ray analyzer. Single-crystal X-ray
diffraction measurements were performed at room tem-
perature on a Simens SMART CCD diffractometer. The
electron probe microanalysis of the regular-shaped crys-
tals showed a composition corresponding to the DyMo6S8
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Fig. 2. Magnetization versus temperature at several applied
fields for DyMo6S8 single crystal for the field direction oriented
parallel to the magnetic easy axis.

formula. The cell parameters in the rhombohedral lat-
tice were aR = 6.452 × 10−8 cm and αR = 89.50◦,
and were equivalent for all crystals analyzed. The sin-
gle crystal selected for our experiment had dimensions
0.2 × 0.2 × 0.2 mm3 and a mass � 0.05 mg.

Magnetization was measured with the SHE 330X se-
ries SQUID system with SQUID sensor installed in the
vacuum chamber of the 3He –4He dilution refrigerator.
The sensor was thermally anchored to the liquid He bath
(4.2 K) and shielded with a Nb tube. Two counter-wound
pickup coils were connected to the input coil of the SQUID
sensor. The SQUID pickup coils were placed in the cen-
ter of a 10 cm long superconducting solenoid generating
a magnetic field up to 1.5 kOe. Both the coils and the
solenoid were fixed to the mixing chamber of the dilu-
tion refrigerator. Details of the experimental setup are de-
scribed elsewhere [14]. The perfect shielding (4πM = H0)
of the Meissner state was used to calibrate the SQUID
system. The crystal was oriented with the magnetic easy
axis (the [111] crystallographic triple axis) parallel to the
external magnetic field. For this orientation, the demag-
netizing factor was assumed to be k = 1/3.

Comparison with theory

In Figure 2, the magnetization M measured as a function
of temperature is presented for several applied magnetic
fields oriented parallel to the easy axis of the single crys-
tal. At higher temperatures, the transition to the super-
conducting state is observed at Tc as the smooth decrease
of M (e.g., Tc = 1.62 K for H0 = 20 Oe). This critical
temperature is clearly field dependent as expected for a
superconductor. At low fields, M riches negative values
close to Tc. At higher fields, this is not possible because of
the induced strong paramagnetic moment of the Dy ions.
At low temperatures, the abrupt change of M is observed
at TN = 0.4 K, reflecting the transition to the AF state.

Fig. 3. Magnetic induction for DyMo6S8 single crystal in the
virgin state measured as a function of an applied field for three
temperatures below TN = 0.4 K. The field direction is oriented
parallel to the magnetic easy axis of the crystal. Each B(H0)
curve exhibits characteristic plateau indicating that a number
of vortices is kept constant when the external field is increased.
The results are not corrected for demagnetizing effects. The
corrected values used for calculations are given in Table 1. The
solid lines are guide to the eye.

In that state, the internal field is reduced and M can
now become negative even for higher fields. At TN and for
H0 ≤ 200 Oe, the change of M between the paramagnetic
(PM) and AF states increases significantly with increasing
field, as expected. However, for H0 > 200 Oe, the single
crystal is in the SF phase [15,16] and the observed change
of M, caused by the transition to the ordered state, now
decreases with increasing field.

The low-field parts of the B(H0) virgin curves are
presented in Figure 3 to show the details of flux pene-
tration. These curves have been obtained by the simple
transformation of the M(H0) results reported in our pre-
vious work [14]. The observed penetration is typical above
TN = 0.4 K and proceeds as an unusual two-stage process
at lower temperatures where AF order coexists with su-
perconductivity. At low fields the sample is in the Meissner
state. When the field increases above Hc1, the sample is
penetrated by the flux. Then, at higher fields, the penetra-
tion process stops unexpectedly and B = Bpl is constant
in the sample while the external field is further increased.
This new perfect shielding appears at H = Hpl. The
penetration process starts again when the field reaches
H = Hen2. This value we call the second critical field for
flux penetration.

An interesting effect of the temperature dependence of
Hc1 below TN is seen in Figure 3 and Table 1. The very
small decrease in temperature results in the significant
increase of Hc1, whereas Hc2 measured by us in 0.1 K,
0.12 K, and 0.14 K remains close to 900 Oe. The similar
behavior has been observed in GdMo6Se8, its main feature
is a sharp dip on the Hc1(T ) around TN and a plateau
on Hc2(T ) for T < TN [21]. This behavior agrees well
with our theoretical model. The large increase of Hc1 for
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Table 1. Experimental values of Figure 3 corrected for demag-
netizing effects according to the formulae: H = H0 + 4πkM,
and B = H − 4π(1 − k)M [24], where M (absolute value) is
taken from Figure 4 of reference [14].

T [K] κ Hc1 [Oe] Hpl [Oe] Bpl [G] Hen2(B) [Oe]

0.14 4.3 100 170 135 250
0.12 3.1 150 185 105 270
0.10 2.6 180 200 80 280

temperatures decreasing below TN indicates that our sam-
ple is in the antiferromagnetic collinear phase. In this
phase, when temperature decreases from TN , the pair-
breaking effects due to molecular field and antiferromag-
netic fluctuations weaken and Hc1(T ) rapidly tends to
match its pattern in the paramagnetic state. On the con-
trary, the nearly constant Hc2 below TN [22,23] indicates
that the sample is in the antiferromagnetic canted phase
and pair-breaking effects due to the on-field component
of the molecular field are present even at the lowest tem-
peratures. In our model we have assumed that vortices
enter the sample in the collinear antiferromagnetic state,
and when the field is increased the canted phase appears
first inside the core of the vortex. Thus, above Hen2, if
the external field is further increased the volume of the
canted phase enlarges. This makes possible to transform
the whole sample to the canted phase well below Hc2.

In order to compare our theoretical model with the
experimental results we have estimated several quantities.
The most important is the Ginzburg-Landau (GL) param-
eter κ. This parameter has been calculated in [14] to be
equal to 2.6 for T = 0.10 K. We have taken advantage of
the strange behavior of Hc1(T ) and Hc2(T ) to calculate
κ for T = 0.14 K and T = 0.12 K. The constant value of
Hc2 = 900 Oe in the range of 0.10 K ≤ T ≤ 0.14 K pre-
dicts that coherence length does not change in this interval
of temperatures where an abrupt increase of Hc1 suggests
that the penetration depth drastically decreases. This ob-
servation has been used to write the following equation

Hc1(T0)
Hc1(T )

=
(

κ(T )
κ(T0)

)2 ln κ(T0)
ln κ(T )

, (24)

where T0 = 0.10 K , κ(T0) = 2.6 and 0.12 K ≤ T ≤ 0.14 K.
The above equation has been solved numerically and the
results for κ are given in Table 1.

To find the thermodynamic critical field HT and then
to calculate Hen2(B) we have used the following argumen-
tation. At low fields, in the vicinity of the lower critical
field Hc1, the intensity of the field in the vortex core is
2Hc1 [17]. When the external field is increased the field
intensity in the vortex core increases because of the su-
perposition of the fields of the surrounding vortices. The
field intensity in the core must reach HT in order to orig-
inate the transition to the SF phase. Thus, taking into
account only the nearest z neighbors we can write

HT = 2Hc1 + z
ϕ0

2πλ2
K0

(
d

λ

)
, (25)

Table 2. Summary of the calculated quantities.

T [K] d/λ HT [Oe] 4πM [G] BT [G] Hen2(B) [Oe]

0.14 1.7 250 1000 1250 215
0.12 2.8 325 775 1100 240
0.10 4.9 360 700 1060 265

where d denotes intervortex spacing, and d/λ corresponds
to the value Bpl for which the penetration process unex-
pectedly stops. The relations B∆ = 2ϕo/d2

√
3 (for tri-

angular lattice of vortices), ϕo = 2πHc2ξ
2, where Hc2 =

900 Oe [14] have been used to obtain d/λ. Then, this value
has been inserted into equation (25) to obtain HT . The
saturation magnetization of Dy ions, 8πM0 = 3780 G has
been calculated taking into account the volume of the el-
ementary cell of DyMo6S8, V = 268 × 10−24 cm3. The
anisotropy coefficient K = 0.44 has been determined for
each magnetization curve by finding the best fit of the the-
oretical with the experimental magnetization curves [25].
Next, the magnetization in the SF-phase domain has been
calculated with the help of equation (6)

M = 2M0 cos θ =
2KM2

0

HT
· (26)

Equation (26) gives M corresponding to the field Hpl

for which the penetration stops. Finally, inserting all
the above calculated values into equations (22, 23) we
have obtained Hen2(B). The results are summarized in
Table 2.

Conclusion

We have demonstrated that the antiferromagnetic super-
conductor DyMo6S8 shows interesting behavior in the
magnetic field applied below TN . The sample in the vir-
gin state magnetizes initially like ordinary type II super-
conductor. When the applied magnetic field reaches the
critical field for flux penetration the sample transforms
from the Meissner to the mixed state. Then, magnetiza-
tion proceeds in an unusual way. As the field is further
increased, a new shielding state appears but, in the con-
trary to the Meissner state, with a constant flux density
inside the sample. Characteristic plateau, observed for the
magnetization curves, proofs that magnetic flux density
inside DyMo6S8 is unaffected by the increased external
field. When the field reaches certain value, we call it the
second critical field for flux penetration, the flux starts to
enter the sample again. This phenomenon we name two-
step flux penetration. We have argued that in this new
state vortices transform to the shape shown in Figure 1,
where a domain of the spin-flop phase is created. The ex-
pected metamorphosis of the vortices leads to a spatial re-
distribution of the shielding supercurrents, flowing around
the core, in order to keep constant the flux carried by each
vortex. Consequently, a new energy barrier is formed near
the surface preventing vortices from entering the sample.
Thus, the number of vortices inside the superconductor is
kept constant. To overcome the new energy barrier by the
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vortices with magnetic structure the external field must be
increased beyond Hen2, the second critical field for flux
penetration. The formula for this field has been derived
using the image method. The values of Hen2 calculated
for three temperatures below TN agree very well with the
experimental results.
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20. R. Horyń, O. Pena, C. Geantet, M. Sergent, Supercond.
Sci. Technol. 2, 71 (1989)

21. K. Rogacki, Cz. Su�lkowski, Physica C 153-155, 483
(1988)

22. M. Ishikawa, Contemp. Phys. 23, 443-468 (1982)
23. M. Ishikawa, J. Muller, Solid State Commm. 27, 761

(1978)
24. L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous

media, Chap. 6 (Oxford, Pergamon Press 1960)
25. A.H. Morrish, The Physical Principles of Magnetism,

Chap. 6 (John Wiley and Sons, Inc. New York 1965)


